Николай Левашов. Неоднородная Вселенная

Рубрика: Левашов

Рис. 4.2.1

Рис.4.2.1. При поглощении атомами волн, их уровень мерности увеличивается. Солнечный свет поглощается поверхностью планеты. Каждый атом, после поглощения фотона света, некоторое время находится в возбуждённом состоянии (его уровень собственной мерности становится выше уровней мерности соседних атомов, образующих кристаллическую решётку), после чего, излучает волну. Атом поглощает одну волну, а излучает другую. Это происходит потому, что часть энергии поглощённой волны теряется. В результате этого «разогретая поверхность» в течение солнечного дня начинает сама излучать волны, в основном, тепловые. Излучённые разогретой поверхностью тепловые волны начинают поглощаться молекулами атмосферы. При этом уровень собственной мерности атомов атмосферы над разогретой поверхностью увеличивается. И, в итоге, общий уровень собственной мерности атмосферы над разогретой поверхностью увеличивается, в то время, как собственный уровень мерности атмосферы над неосвещённой поверхностью, уменьшается. Уменьшение собственной мерности атмосферы над неосвещённой (ночной) поверхностью планеты или частично освещённой происходит в силу того, что атомы атмосферы тоже излучают волны и это приводит к уменьшению собственной мерности излучающих молекул. В результате, между освещённой и неосвещённой поверхностями планеты возникает горизонтальный перепад (градиент) мерности. Поэтому несвязанные в жёсткую систему молекулы атмосферы начинают двигаться вдоль этого горизонтального перепада мерности, что и является причиной движения слоёв атмосферы — ветра.

1. Поверхностный слой планеты с атмосферой.

2. Качественный барьер между физически плотной и второй материальной сферами.

3. Качественный барьер между второй и третьей материальными сферами.

4. Вертикальный перепад мерности внутри неоднородности.

5. Продольный (горизонтальный) перепад мерности, возникающий между освещённой и неосвещённой поверхностями планеты.

6. Увеличение качественного барьера над освещённой поверхностью.

7. Скопление первичных материй на границе между физически плотной и второй материальной сферами над освещённой поверхностью.

Рис. 4.3.1

Рис.4.3.1. Пространственная структура алмаза, в кристалле которого атомы углерода С располагаются на одинаковом друг от друга расстоянии. Расстояние между атомами углерода в кристалле алмаза соизмеримо с размерами самих атомов углерода. Поэтому никакие другие атомы и молекулы не только большего чем атом углерода размера, но и меньшего не в состоянии двигаться между ними. Возможна только лишь замена некоторых атомов углерода на другие, что приводит к тому, что прозрачный кристалл алмаза приобретает окраску. По этой причине человек имеет возможность любоваться красотой жёлтых, голубых, красных и чёрных алмазов, которые, обработанные рукой человека, превращаются в изумительные по своей красоте камни... Кроме этого, подобная кристаллическая решётка делает алмаз самым прочным соединением атомов в природе, и это делает его незаменимым в технике.

а. Расстояние между атомами углерода С в кристалле алмаза.

Рис. 4.3.2

Рис.4.3.2. Пространственная структура графита, в кристалле которого атомы углерода, в горизонтальной плоскости расположены на одинаковом расстоянии, в то время, как расстояние между слоями в вертикальной плоскости значительно больше расстояния между атомами углерода в горизонтальной. Такое, казалось бы, незначительное отличие в пространственном расположении атомов углерода делает эти кристаллы очень мягкими. Эта пространственная организация атомов углерода носит названия графита и очень широко используется в промышленности и в быту (стержни карандашей, в электронике и т.п.). Те же самые атомы углерода, что создают самое прочное соединение в природе — алмаз, создают и самый мягкий из природных кристаллических соединений — графит. Казалось бы незначительное изменения в пространственной структуре соединения атомов углерода превращает самое прочное соединение атомов в природе, в самое мягкое. Причина такого отличия в свойствах этих соединений углерода С заключаются в различных внешних условиях, при которых они образуются.

Рис. 4.3.3

Рис.4.3.3. Пространственная структура углеродной цепочки. Соединяясь в цепочки, атомы углерода С могут создавать молекулы в сотни тысяч, миллионы атомных единиц. При этом, такие молекулы влияют на окружающий микрокосмос неравномерно, создавая вокруг себя анизотропную структуру микрокосмоса. Возможность создавать атомами углерода подобные соединения определяется тем, что он — четырёхвалентный. Именно это свойство электронных оболочек атомов углерода создаёт спектр качеств, благодаря которым, стало возможным появление жизни. Так называемые, внешние электроны атомов углерода способны создавать соединения с внешними электронами других атомов в перпендикулярных относительно друг друга направлениях. Именно это свойство позволяет атомам углерода С создавать различные пространственные соединения.

С — атомы углерода.

Н — атомы водорода.

Рис. 4.3.4

Рис. 4.3.4. Пространственная структура цитозина, одного из четырёх нуклеотидов, структурно образующих молекулы ДНК и РНК. Соединяясь между собой, нуклеотиды образуют спирали молекул ДНК и РНК, которые являются фундаментом жизни. Чудо жизни рождается, как следствие качественно другого пространственного соединения атомов углерода между собой. Подобная пространственная структура соединения атомов углерода образуется в водной среде во время атмосферных разрядов электричества. Три вида соединения атомов углерода между собой порождают три вида пространственной организации материи — изотропную структуру алмаза, изотропную по двум пространственным направлениям и анизотропную по одному, структуру графита и, наконец, анизотропную по всем пространственным направлениям, структуру молекул ДНК и РНК. Таким образом, анизотропность материи является фундаментом жизни.

С — атомы углерода.

Н — атомы водорода.

О — атомы кислорода.

N — атомы азота.

Рис. 4.3.5

Рис.4.3.5. Пространственная структура сегмента молекулы РНК, представляющая собой последовательное соединение в цепочку нуклеотидов — гуанина, аденина, тимина и цитозина. Молекулярный вес этой молекулы составляет сотни тысяч, миллионы атомных единиц и распределён непропорционально в разных пространственных направлениях, что и является уникальным свойством этой молекулы. Пространственная анизотропность молекул ДНК и РНК является необходимым условием зарождения жизни. Именно пространственная неоднородность на уровне микрокосмоса создаёт необходимые и достаточные условия для появления живой материи. Для неживой материи характерно наличие изотропной, симметричной пространственной организации материи. Пространственная и качественная асимметрия — необходимые условия для живой материи. Не правда ли, любопытный парадокс природы? Асимметрия — живая материя. Пространственная неоднородность является не только причиной рождения звёзд и «чёрных дыр» во вселенной, но и причиной чуда природы — жизни.

Рис. 4.3.6

Рис.4.3.6. Пространственный вид с торца молекул РНК и ДНК. Спирали этих молекул создают в микропространстве как бы туннель, внутренний объём которого имеет радиальный перепад мерности. Внутри спиралей молекул РНК и ДНК создаётся анизотропная структура микропространства. Возникает своеобразная засасывающая воронка для всех молекул, которые при своём движении внутри клетки попадают в «опасную» близость от молекул ДНК и РНК. Не правда ли, любопытная аналогия с «чёрной дырой», которая засасывает в себя любую материю, попавшую на её «территорию» — область пространства, в пределах которого действует избыточное притяжение. Как в случае молекул ДНК и РНК, так и в случае «чёрных дыр» засасывание материи происходит в результате наличия некоторого постоянного перепада мерности в зоне расположения этих материальных объектов. Различие только в величине этого перепада мерности и в том, что в случае молекул ДНК и РНК имеют место процессы, происходящие на уровне микропространства, а в случае «чёрных дыр» — макропространства.

Рис. 4.3.7

Рис.4.3.7. Спиралевидная пространственная форма молекул РНК и ДНК обеспечивает создание во внутреннем объёме этих молекул анизотропного микропространства. Радиальный и продольный перепады мерности, накладываясь друг на друга во внутреннем объёме спиралей молекул РНК и ДНК, создают продольную стоячую волну перепада мерности. Подобная пространственная структура создаёт ловушку для всех других молекул, как органического, так и неорганического происхождения. В результате броуновского движения молекул внутри клетки, они оказываются вблизи молекулы РНК или ДНК. Радиальный перепад уровня мерности внутри спиралей этих молекул заставляет, попавшие во внутренний объём спиралей молекулы двигаться вдоль, так называемой, оптической оси молекул ДНК и РНК. При своём движении во внутреннем объёме спиралей молекул ДНК или РНК, «пленённые» молекулы попадают под действие перепадов уровней мерности.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

Рис. 4.3.8

Рис.4.3.8. Попавшие во внутренний объём спиралей РНК и ДНК молекулы, под воздействием радиального перепада мерности вынужденно начинают двигаться вдоль оси спирали. При своём движении вдоль оси, пленённая молекула попадает под продольные перепады мерности микропространства, создаваемые стоячей волной мерности. Для большинства пленённых молекул этот перепад запредельный и приводит к тому, что эти молекулы начинают распадаться на первичные материи их образующие.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

Рис. 4.3.9

Рис.4.3.9. Под воздействием продольных перепадов мерности вдоль оси спирали молекула оказывается в неустойчивом состоянии и, когда раскачка достигнет критической величины, происходит распад этой молекулы D на первичные материи, её образующие. При этом, происходит синтез молекул D' с таким уровнем собственной мерности, при котором эти молекулы сохраняют свою устойчивость под воздействием продольных перепадов мерности стоячей волны спирали молекулы РНК или ДНК. Эти, устойчивые к подобным перепадам вновь синтезированные из первичных материй молекулы являются токсинами, шлаками и должны быть выведены из организма. Таким образом, во внутреннем объёме спиралей молекул ДНК и РНК происходят ядерные реакции распада и синтеза. Но это — ядерные реакции другого типа, когда распаду подвергаются внешние молекулы, попавшие в «ловушку» спиралей молекул РНК или ДНК. Но, тем не менее, факт остаётся фактом, в живой материи происходят ядерные реакции расщепления и синтеза молекул. И никакого противоречия в этом нет; в живой материи ядерные реакции происходят только внутри спиралей молекул ДНК и РНК, в микроскопическом объёме, какими бы большими не были бы эти молекулы. И при этом, не возникает цепной реакции, как в случае классических ядерных реакций.

1. Анизотропный внутренний объём спирали РНК или ДНК.

2. Перепад (градиент) мерности микропространства вдоль оси Y.

3. Перепад (градиент) мерности микропространства вдоль оси Z.

4. Стоячая волна перепада мерности микропространства внутреннего объёма спиралей молекул РНК и ДНК вдоль оси Х, совпадающей с осью этих молекул.

5. Пленённая внешняя молекула D.

X